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Abstract

This paper explores the implications of the political economy model of Battaglini and Coate (2008)

for the behavior of fiscal policy over the business cycle. The model predicts that fiscal policy

is counter-cyclical with debt increasing in recessions and decreasing in booms. Public spending

increases in booms and decreases during recessions, while tax rates decrease during booms and

increase in recessions. In both booms and recessions, fiscal policies are set so that the marginal

cost of public funds obeys a submartingale. When calibrated to the U.S. economy, the model

broadly matches the empirical distribution of debt and also its negative correlation with output.

However, the predictions of pro-cyclical spending and counter-cyclical taxation do not find empirical

support. The calibrated model generates the same fit of the data as a benevolent government model

in which the government faces an exogenous lower bound on debt. Nonetheless, the two models

have very different comparative static implications.

JEL classification: E62, H60, H62
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1 Introduction

Real business cycle theory develops the idea that business cycles can be generated by random

fluctuations in productivity. At the core of this research program, the fundamental issues are how

individuals react to shocks and how these reactions affect the macro economy. While the issue of

reaction to shocks is typically studied at the individual level, it can also be raised at the societal

level. How do individuals, through their political institutions, collectively decide to adjust fiscal

policies in response to shocks? Moreover, what is the role of changes in fiscal policy in amplifying

or dampening shocks? Though understanding individual responses to shocks can be addressed

with the tools of basic microeconomics, understanding societal responses requires a study of how

collective choices are made in complex dynamic environments.

In the last two decades, political economy has made important progress, both theoretically

and empirically, in understanding how governments function and the type of distortions that the

political process generates in an economy. This first generation of research, however, has largely

focused on static or two period models that are not well suited to answer the questions raised by

real business cycle theory. When longer time horizons are considered, other important elements

of the environment (such as shocks, rational forward-looking agents, etc) are muted. Thus, the

basic question as to how governments react to business cycles is not well understood. Because of

this, empirical analysis of the cyclical behavior of fiscal policy remains largely guided by normative

models of policy making.

As part of a second generation of political economy research analyzing more general dynamic

models, Battaglini and Coate (2008) propose a positive theory of fiscal policy.1 Their framework

begins with a tax smoothing model of fiscal policy of the form studied by Barro (1979), Lucas and

Stokey (1983), and Aiyagari, Marcet, Sargent and Seppala (2002). The need for tax smoothing

is generated by shocks in the benefits of public spending created by events like wars and natural

disasters. Politics is introduced by assuming that policy choices are made by a legislature rather

than a benevolent social planner. Moreover, the framework incorporates the friction that legislators

can redistribute tax revenues back to their districts via pork-barrel spending. The theory yields

clean predictions on how fiscal policy responds to public spending shocks and provides a sharp

account of how politics distorts economic policy-making.

This paper explores the implications of the Battaglini-Coate theory for the behavior of fiscal

policy over the business cycle. The paper has three parts. The first develops the theoretical

predictions of the model. This involves replacing public spending shocks with revenue shocks

generated by random fluctuations in the economy’s productivity. These productivity shocks are

assumed persistent as opposed to independent and identically distributed. Persistent shocks are

1Other examples of this type of work include Acemoglu, Golosov, and Tsyvinski (2008), Azzimonti (2011), Hassler

et al (2003), Hassler et al (2005), Krusell and Rios-Rull (1999), Song, Zilibotti, and Storesletten (2012), and Yared

(2010).
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essential to capture the implications of cyclical fluctuations. When an economy enters a boom

or a recession, legislators’ expectations about future tax revenues will clearly be influenced and

these changed expectations will impact current taxing, spending, and borrowing decisions. The

second part of the paper evaluates the implications of the theory by calibrating the model to the

U.S. economy. The performance of the model in explaining the debt distribution and the cyclical

behavior of fiscal variables is analyzed. The third and final part compares the performance of the

model with a benevolent government model in which, following the approach of Aiyagari, Marcet,

Sargent and Seppala (2002), the social planner is assumed to face an exogenous lower bound on

debt. The purpose of this exercise is to assess the importance of micro-founded modeling of political

decision-making.

The specific environment analyzed assumes that a single good is produced using labor. This

good can be consumed or used to produce a public good. Labor productivity follows a two state,

serially-correlated Markov process. When productivity is high, the economy is in a “boom” and,

when it is low, a “recession”. Policy choices in each period are made by a legislature comprised of

representatives elected by single-member, geographically-defined districts. The legislature can raise

revenues by taxing labor income and by issuing one period risk-free bonds. Public revenues are used

to finance public good provision and pork-barrel spending. The legislature makes policy decisions

by majority (or super-majority) rule and legislative policy-making is modelled as non-cooperative

bargaining.

While the incorporation of persistent shocks complicates the characterization of equilibrium,

the model remains tractable. Equilibrium fiscal policies converge to a stochastic steady state in

which they vary predictably over the business cycle. Upon entering a boom, public spending will

increase and tax rates will fall. Over the course of the boom, public spending will continue to

increase until it reaches a ceiling level, and tax rates will decrease until they reach floor levels.

When the economy enters a recession, public spending will decrease and tax rates will increase.

As the recession progresses, public spending will continue to decrease and tax rates will continue

to increase. The overall fiscal stance as measured by the long run pattern of debt is, however,

counter-cyclical: government debt decreases in booms and increases in recessions.2

2There are a number of definitions of “counter-cyclical” fiscal policy in the literature. Consistent with a Keynesian

perspective, Kaminsky, Reinhart, and Vegh (2004) and Talvi and Vegh (2005) define fiscal policy to be counter-cyclical

if government spending rises in recessions and tax rates fall. Adopting a neoclassical perspective, Alesina, Campante,

and Tabellini (2008) define as counter-cyclical “a policy that follows the tax smoothing principle of holding constant

tax rates and discretionary spending as a fraction of GDP over the cycle”. Our definition is that fiscal policy is

counter-cyclical if debt falls in booms and rises in recessions. Like Alesina, Campante, and Tabellini, our definition

is motivated by tax smoothing principles. However, it recognizes the fact that in a world with incomplete markets

and unanticipated productivity shocks, these principles do not imply constant tax rates or government spending over

the cycle. While reflecting a neoclassical perspective, our definition does not discriminate between a neoclassical and
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Perhaps the most interesting feature of the cyclical behavior of fiscal policy is that debt falls

when the economy enters a boom. Intuitively, one might have guessed just the opposite. A

boom will increase the expectation of future tax revenues and this may lead legislators to increase

borrowing so they can appropriate these extra revenues for their districts. Indeed, this is precisely

the logic of the well-known voracity effect of Tornell and Lane (1999). This intuition is correct,

but ignores the fact that any increase in debt will have permanent effects. Thus, such a voracity

effect-style debt expansion can arise the first time the economy moves from recession to boom, but,

once this happens, the level of debt is too high for it to occur again.

In addition, the paper identifies an interesting implication of the theory concerning the dynamic

evolution of the so-called marginal cost of public funds (MCPF). The MCPF, a basic concept in

public finance, is the social marginal cost of raising an additional unit of tax revenue. It takes

into account the distortionary costs of taxation for the economy. In the model, it depends upon

the tax rate and the elasticity of labor supply. The theory implies that, at each point in time and

over all phases of the cycle, the equilibrium choice of fiscal policies is such that the MCPF obeys

a submartingale.3 This means the expected MCPF next period is always at least as large as the

current MCPF and is sometimes strictly larger. This prediction contrasts with that emerging from

a planning model which implies that the MCPF obeys a martingale. Political distortions therefore

create a wedge between the current MCPF and the future MCPF.4

The quantitive assessment of the model in the second part of the paper uses U.S. data from

1948 to 2011. The model is calibrated to match the empirically observed variation in output, the

frequency and length of recessions, and the average debt/GDP and spending/GDP ratios. The

model produces a distribution of debt which is similar to the empirically observed one. This means

that debt averages around 42% of GDP, is volatile, and strongly negatively correlated with output.

Both in the model and the data, the tax rate and public spending are much less volatile than debt.

However, in the model both taxes and public spending are less volatile than in the data. Moreover,

the predictions of a counter-cyclical tax rate and pro-cyclical public spending are not supported by

the data.

The comparison with the Aiyagari, Marcet, Sargent and Seppala-style model (hereafter AMSS-

style model) in the third part of the paper, begins by calibrating an exogenously constrained

benevolent government model to the same data. The exogenous constraint is treated as a free

Keynesian view of optimal fiscal policy over the cycle: in both cases, government debt will rise in recessions and fall

in booms. As suggested by Kaminsky, Reinhart, and Vegh (2004), the way to discriminate between these views is to

look at the behavior of tax rates and public spending. We will discuss this point in greater detail below.
3 In our model the assumptions of the standard submartingale convergence theorem are not satisfied, so the MCPF

does not converge to a constant or to infinity as →∞. Indeed, we show that in the long run the MCPF will have
a non degenerate stationary distribution.

4This submartingale result is also true in the model of Battaglini and Coate (2008), although this has not previously

been noted.
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parameter which is determined as part of the calibration. While the two models are by no means

theoretically equivalent, the calibrated models deliver the same fit of the data. However, the

two models have starkly different comparative static implications. These differences highlight the

importance of modelling the underlying political decision-making when predicting the implications

of changes in the underlying economic environment.

The organization of the remainder of the paper is as follows. The next section places the paper

in the context of the prior literature on the cyclical behavior of fiscal policy. Section 3 outlines the

model and establishes a benchmark by describing socially optimal fiscal policies. Section 4 presents

the theoretical results. Section 5 provides the quantitative assessment of the model. Section 6

compares the performance of the model with an AMSS-style model and Section 7 concludes.

2 Related literature

There is a large literature on the cyclical behavior of fiscal policy, with both theoretical and empirical

branches. The benchmark theoretical model used in the literature is the tax smoothing model with

perfect foresight (Barro (1979)). In this model, deterministic and perfectly anticipated cyclical

variation in the economy generates fluctuations in tax revenues. The government smooths tax

rates and public spending by borrowing in recessions and repaying in booms (see, for example,

Talvi and Vegh (2005)). Thus, debt is negatively correlated with changes in GDP, while public

spending and tax rates are uncorrelated with changes in GDP.

Support for the predictions of this model comes from Barro (1986) who studies the correlation

between debt and income changes for the U.S. federal government. Using data from the period

1916-1982, he finds a negative correlation between changes in debt and changes in GNP.5 Studies of

the correlation between public spending and GDP provide more mixed support.6 The basic findings

are that public spending tends to be slightly pro-cyclical for developed economies, and much more

5Barro runs regressions of the form ( − −1) =  ·  +  + where  is debt,  is GNP,  is a

vector of control variables,  is a business cycle indicator, and  is a shock. The business cycle indicator takes

on negative values during a boom and positive values during a recession. He finds that the coefficient  is positive,

suggesting that debt behaves counter-cyclically.
6The correlation between government consumption (which excludes transfers and debt interest payments) and

changes in GDP has been studied extensively for the U.S. both at the federal and state level, and for different groups

of countries aggregated according to geographical location and stage of economic development. Gavin and Perotti

(1997) compare a sample of Latin American countries with a sample of industrialized countries. Sorensen, Wu, and

Yosha (2001) study the U.S. states. Lane (2003) looks at all the OECD countries. Alesina, Campante, and Tabellini

(2008), Kaminsky, Reinhart, and Vegh (2004), Talvi and Vegh (2005), and Woo (2009) look at data sets containing

a broad sample of developed and developing countries.
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pro-cyclical for developing countries.7 These findings have been interpreted as suggesting that fiscal

policy is basically consistent with the perfect foresight tax smoothing model in developed countries

and inconsistent in developing countries.

A variety of theories have been advanced to explain the stronger pro-cyclical behavior of gov-

ernment spending in developing countries. In an early attempt to explain the phenomenon, Gavin

and Perotti (1997) note that pro-cyclical policies may be induced by tighter debt constraints in

recessions. Borrowing limits in recessions would force contractionary policies; as the limits are

relaxed in booms, we would observe expansionary policies. Other authors point to the dysfunc-

tional political systems that pervade developing countries. In a dynamic common pool framework

in which multiple groups compete for a share of the national pie, Lane and Tornell (1998) and

Tornell and Lane (1999) suggest that group competition can increase following a positive income

shock which may lead spending to increase more than proportionally to the increase in income

- the voracity effect. In the context of a perfect foresight tax smoothing model, Talvi and Vegh

(2005) show that if spending pressures increase with the size of the primary surplus, then optimal

fiscal policy will imply a pro-cyclical pattern of spending. In a political agency framework, Alesina,

Campante and Tabellini (2008) show that when faced with corrupt governments whose debt and

consumption choices are hard to observe, citizens may rationally demand higher public spending

in a boom.

The theory developed here is complementary to the political economy theories of Lane and

Tornell and Alesina, Campante, and Tabellini. They are interested in modelling different, and

much more dysfunctional, political systems than modelled by Battaglini and Coate. As noted in

the introduction, this paper’s theory predicts that a voracity effect-style debt expansion can arise

the first time the economy moves from recession to boom. However, it differs from Lane and

Tornell’s work in that the economy is subject to recurrent cyclical shocks rather than a one time

permanent shock that is either unforeseen (in the sense that it has zero ex ante probability) or

perfectly anticipated at time zero. This accounts for the conclusion that the voracity effect does

not arise in the long run.

A deeper problem with models of tax smoothing in which shocks are deterministic and perfectly

anticipated is that its predictions are not robust to relaxing the assumption of perfect foresight.

Under the more palatable assumption that cyclical variations are stochastic and therefore not

perfectly foreseen, the tax smoothing approach can have trouble explaining cyclical fiscal policy in

the long run. Specifically, in environments with incomplete markets, the approach can imply that

the government should self-insure, eventually accumulating sufficient assets to finance government

spending out of the interest earnings from these assets (Aiyagari, Marcet, Sargent and Seppala

(2002)).8 In this case, the model predicts no long run cyclical pattern in debt, taxes, or public

7See, in particular, Alesina, Campante, and Tabellini (2008), Gavin and Perotti (1997), Kaminsky, Reinhart, and

Vegh (2004), Talvi and Vegh (2005), and Woo (2009).
8Different conclusions arise when there are complete markets and the government can issue state-contingent debt.
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spending. As we explain in Section 3, this is the case in our environment.

In a world in which spending shocks drive fiscal policy, Aiyagari, Marcet, Sargent and Seppala

(2002) show that the tax smoothing model can generate plausible fiscal dynamics if the government

faces an upper bound on how many assets it can accumulate. Their paper therefore suggests

that the tax smoothing model may be revived by simply adding on an exogenous lower bound

on debt. Battaglini and Coate (2008) link their theory to this idea by showing that the political

equilibrium solves a constrained planning problem in which the planner faces a lower bound on debt,

a lower bound on taxes, and an upper bound on public good spending. However, these bounds are

endogenous and depend on the economic and political environment. This paper shows that the

lessons from Battaglini and Coate carry over to the business cycle context. The only difference is

that with persistent shocks, the lower bound on debt depends on the shock. This naturally raises

the question of how the political economy model performs relative to a tax smoothing model with

an exogenous lower bound and motivates the comparison presented in Section 6.

3 Preliminaries

3.1 The model

3.1.1 The economic environment

A continuum of infinitely-lived citizens live in  identical districts indexed by  = 1  . The

size of the population in each district is normalized to be one. There is a single (nonstorable)

consumption good, denoted by , that is produced using a single factor, labor, denoted by , with

the linear technology  = . There is also a public good, denoted by , that can be produced from

the consumption good according to the linear technology  = .

Citizens consume the consumption good, benefit from the public good, and supply labor. Each

citizen’s per period utility function is

 +
1−

1− 
− (1+1)

+ 1


where   0 and   0.9 The parameter  measures the utility from the public good relative to

the utility from consumption and the parameter  controls the elasticity of the citizens’ utility with

respect to the public good. Citizens discount future per period utilities at rate .

We focus on the incomplete markets assumption here because we feel that it is the most appropriate for a positive

analysis. We refer the reader to Chari, Christiano and Kehoe (1994) for a comprehensive analysis of optimal fiscal

policy in a real business cycle model with complete markets and to Marcet and Scott (2009) for an interesting effort

to empirically test between the complete and incomplete market assumptions.
9When  = 1 the utility from the public good becomes  log()
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The productivity of labor  varies across periods in a random way, reflecting the business cycle.

Specifically, the economy can either be in a boom or a recession. Labor productivity is  in a

boom and  in a recession, where    . The state of the economy follows a first order Markov

process, with transition matrix ⎡⎣  

 

⎤⎦ 
Thus, conditional on the economy being in a recession, the probability of remaining in a recession

is  and the probability of transitioning to a boom is  . Similarly, conditional on being in

a boom, the probability of remaining in a boom is  and the probability of transitioning to a

recession is . Though in many environments it is natural to assume that states are persistent,

this assumption is not necessary for our results. However, we do require that  exceeds  ,

so that the economy is more likely to be in a boom if it was in a boom the previous period.10

There is a competitive labor market and competitive production of the public good. Thus, the

wage rate is equal to  in a boom and  in a recession and the price of the public good is .

There is also a market in risk-free one period bonds. The assumption of a constant marginal utility

of consumption implies that the equilibrium interest rate on these bonds must be  = 1 − 1. At
this interest rate, citizens will be indifferent as to their allocation of consumption across time.

3.1.2 Government policies

The public good is provided by the government. The government can raise revenue by levying

a proportional tax on labor income. It can also borrow and lend by selling and buying bonds.

Revenues can not only be used to finance the provision of the public good but can also be diverted

to finance targeted district-specific transfers which are interpreted as (non-distortionary) pork-

barrel spending.

Government policy in any period is described by an  + 3-tuple {    1  }, where 

is the income tax rate,  is the amount of the public good provided,  is the amount of bonds

sold, and  is the proposed transfer to district ’s residents. When  is negative, the government

is buying bonds. In each period, the government must also repay any bonds that it sold in the

10Our basic model assumes that in the “up-part” of the business cycle there is a single productivity level  ,

and in the “down-part” a single productivity level . Thus, within booms and recessions, there is no variation in

productivity. While this is a rather spartan conception of a business cycle, the model can be extended to incorporate

within state productivity shocks by assuming that productivity in state  is given by  +  where  is an i.i.d

“shock” with mean zero, range [− ]. Though the introduction of i.i.d shocks makes the distinction between

booms and recessions less clear-cut, the equilibrium of the extended model has the same structure as the equilibrium

of the simpler model described in the text and produces the same predictions of the key correlation between macro

variables.
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previous period. Thus, if it sold  bonds in the previous period, it must repay (1+) in the current

period. The government’s initial debt level in period 1 is given exogenously and is denoted by 0.

In a period in which government policy is {    1  } and the state of the economy (i.e.,
boom or recession) is  ∈ {}, each citizen will supply an amount of labor

∗() = argmax

{(1− ) − (1+1)

+ 1
}

It is straightforward to show that ∗() = ((1− )), so that  is the elasticity of labor supply.

A citizen in district  who simply consumes his net of tax earnings and his transfer will obtain a

per period utility of (  ) + , where

(  ) =
((1− ))+1

+ 1
+

1−

1− 


Since citizens are indifferent as to their allocation of consumption across time, their lifetime expected

utility will equal the value of their initial bond holdings plus the payoff they would obtain if they

simply consumed their net earnings and transfers in each period.

Government policies must satisfy three feasibility constraints. The first is that revenues must

be sufficient to cover expenditures. To see what this implies, consider a period in which the initial

level of government debt is , the policy choice is {    1  }, and the state of the economy
is . Expenditure on public goods and debt repayment is  + (1 + ), tax revenue is

() = 
∗
() = ((1− ))

and revenue from bond sales is . Letting the net of transfer surplus (i.e., the difference between

revenues and spending on public goods and debt repayment) be denoted by

(   ; ) = ()−  + − (1 + )

the constraint requires that (   ; ) ≥
X


.

The second constraint is that the district-specific transfers must be non-negative (i.e.,  ≥ 0 for
all ). This rules out financing public spending via district-specific lump sum taxes. With lump sum

taxes, there would be no need to impose the distortionary labor tax and hence no tax smoothing

problem.

The third and final constraint is that the amount of government borrowing must be feasible. In

particular, there is an upper limit  on the amount of bonds the government can sell. This limit is

motivated by the unwillingness of borrowers to hold bonds that they know will not be repaid. If the

government were borrowing an amount  such that the interest payments exceeded the maximum

possible tax revenues in a recession; i.e.,   max (), then, if the economy were in recession,

it would be unable to repay the debt even if it provided no public goods or transfers. Thus, the

maximum level of debt is  = max ().
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We avoid assuming that there is any “ad hoc” limit on the amount of bonds that the government

can purchase (see Aiyagari et al (2002)). In particular, the government is allowed to hold sufficient

bonds to permit it to always finance the Samuelson level of the public good from the interest

earnings. This level of bonds is given by  = − where  is the level of the public good that
satisfies the Samuelson Rule.11 Since the government will never want to hold more bonds than this,

there is no loss of generality in constraining the choice of debt to the interval [ ] and we will do

this below.12 We also assume that the initial level of government debt, 0, belongs to the interval

( ).

3.1.3 The political process

Government policy decisions are made by a legislature consisting of representatives from each of

the  districts. One citizen from each district is selected to be that district’s representative. Since

all citizens have the same policy preferences, the identity of the representative is immaterial and

hence the selection process can be ignored.13 The legislature meets at the beginning of each period.

These meetings take only an insignificant amount of time, and representatives undertake private

sector work in the rest of the period just like everybody else. The affirmative votes of   

representatives are required to enact any legislation.

To describe how legislative decision-making works, suppose the legislature is meeting at the

beginning of a period in which the current level of public debt is  and the state of the economy is

. One of the legislators is randomly selected to make the first proposal, with each representative

having an equal chance of being recognized. A proposal is a policy {    1  } that satisfies
the feasibility constraints. If the first proposal is accepted by  legislators, then it is implemented

and the legislature adjourns until the beginning of the next period. At that time, the legislature

meets again with the difference being that the initial level of public debt is  and that the state of

the economy may have changed. If, on the other hand, the first proposal is not accepted, another

legislator is chosen to make a proposal. There are  ≥ 2 such proposal rounds, each of which takes
a negligible amount of time. If the process continues until proposal round  , and the proposal

made at that stage is rejected, then a legislator is appointed to choose a default policy. The only

restrictions on the choice of a default policy are that it be feasible and that it involve a uniform

district-specific transfer (i.e.,  =  for all , ).

11The Samuelson Rule is that the sum of marginal benefits equal the marginal cost, which means that  satisfies

the first order condition that − = .
12By assuming that the government can choose to borrow any amount in the interval [ ], we are implicitly

assuming that labor productivity is sufficiently high that the amount spent on public goods is never higher than

national income. A sufficient condition for this is that ((


1+
))   (see Battaglini and Coate (2008) for

details).
13While citizens may differ in their bond holdings, this has no impact on their policy preferences.
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3.1.4 Discussion

Before turning to the analysis, it is worthwhile highlighting the key differences between the model

just presented and that studied in Battaglini and Coate (2008). First, in Battaglini and Coate the

production function is constant over time and shocks affect the preferences of the citizens for the

public good. In the model just presented, citizens’ preferences are constant, but the productivity

of the economy is stochastic. A consequence of this is that in Battaglini and Coate shocks leave the

set of feasible policies constant, while in this model low shocks reduce expected tax revenues. This,

as we will see, has important implications for the analysis and seems an essential feature of any

model intended to study how fiscal policy reacts to the business cycle. Second, in the model just

presented shocks are persistent. In contrast to Battaglini and Coate, there are two state variables 

and . From a technical point of view, this makes the analysis more complicated since the shocks

change the citizens’ expectations. To analyze these effects it will be essential to characterize how

the shocks affect the expected marginal cost of taxation.

3.2 The social planner’s solution

To create a normative benchmark with which to compare the political equilibrium, we begin by

describing what fiscal policy would look like if policies were chosen by a social planner who wished

to maximize aggregate utility. The planner’s problem can be formulated recursively.14 In a period

in which the current level of public debt is  and the state of the economy is , the problem is to

choose a policy {    1  } to solve:

max (  ) +

X




+ [

◦
() + 

◦
()]

  ≥ 0 for all ,
X


 ≤ (   ; ), &  ∈ [ ],

where ◦() denotes the representative citizen’s value function in state  (net of bond holdings).
Surplus revenues will optimally be rebated back to citizens and hence

X

 = (   ; ).

Thus, we can reformulate the problem as choosing a tax-public good-debt triple (   ) to solve:

max (  ) +
(;)


+ [

◦
() + 

◦
()]

 (   ; ) ≥ 0 &  ∈ [ ].

The problem in this form is fairly standard. The citizen’s value functions ◦ and ◦ solve the

14Because the interest rate is constant, there is no time inconsistency problem in this model. Thus, assuming

that the planner chooses policies period-by-period yields the same results as assuming that he is a Ramsey planner,

choosing a time path of policies at the beginning of period 1.
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functional equations

◦() = max
()

⎧⎨⎩ (  ) +
(;)


+ [

◦
() + 

◦
()]

 (   ; ) ≥ 0 &  ∈ [ ]

⎫⎬⎭  ∈ {} (3.1)

and the planner’s policies in state , {◦(), ◦(), ()}, are the optimal policy functions for this
program.

In any given state ( ) the planner’s optimal policies {◦(), ◦(), ◦()} are implicitly defined
by three conditions. The first is that the social marginal benefit of the public good is equal to the

social marginal cost of financing it; that is,

− = (
1− 

1−  (1 + )
) (3.2)

To interpret this, note that (1 − )(1 − (1 + )) measures the marginal cost of public funds

(MCPF) - the social cost of raising an additional unit of revenue via a tax increase. The term

on the right hand side therefore represents the cost of financing an additional unit of the public

good. The condition is just the Samuelson Rule modified to take account of the fact that taxation

is distortionary and it determines the optimal public good level for any given tax rate. The second

condition is that the marginal cost of public funds today equals the expected marginal cost of debt

tomorrow; that is,15

1− 

1−  (1 + )
= −[◦0() + 

◦0
 ()] (3.3)

This ensures that, on the margin, the cost of financing public goods via taxation equals that of

financing them by issuing debt. The final condition is that the net of transfer surplus be zero; that

is,

(   ; ) = 0 (3.4)

This implies that the planner raises no more revenues than are necessary to finance public good

spending.

Using these conditions, it is possible to show that for each state  the optimal tax rate and debt

level are increasing in  and the optimal public good level is decreasing in . Using the Envelope

Theorem, it is also straightforward to show that the marginal cost of debt tomorrow in state  is

just the marginal cost of public funds tomorrow in state ; that is,

−◦0 () = (
1− ◦()

1− ◦() (1 + )
)

Substituting this into (3.3), yields the Euler equation for the planner’s problem:

1− ◦()
1− ◦() (1 + )

= (
1− ◦(())

1− ◦(()) (1 + )
) + (

1− ◦(())
1− ◦(()) (1 + )

) (3.5)

15Note that in deriving (3.3) we are ignoring the upperbound  ≤ . We show in the Appendix (Section 8.5) that

this is without loss of generality.
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This equation tells us that the optimal debt level equalizes the current MCPF with the correspond-

ing expected MCPF and implies that the MCPF obeys a martingale.16 The condition illustrates

the planner’s desire to smooth taxation between periods.

The Euler equation (3.5) is the key to understanding the dynamic evolution of the system. It

implies that the planner raises debt in a recession and lowers it in a boom. He raises debt in a

recession because he anticipates that the economic environment can only improve in the future. If

it does improve, the MCPF will be lower since tax rates are lower in booms than in recessions.17

Thus, debt must increase to maintain equation (3.5). Likewise, when the economy is in a boom,

the planner anticipates that the economic environment can only get worse in the future and thus

decreases debt. The upshot is that debt behaves counter-cyclically. On the other hand, public good

spending behaves pro-cyclically with spending increasing in booms and falling in recessions.

What happens in the long run? Since the MCPF is a convex function of the tax rate  , the

martingale property implies that the current tax rate exceeds the expected tax rate. Thus, the tax

rate behaves as a supermartingale.18 The Martingale Convergence Theorem therefore implies that

the tax rate converges to a constant with probability one. The only steady state compatible with a

constant tax rate, is a steady state in which the government has accumulated such a large pool of

assets that spending needs can be financed out of the interest earned, and taxation is zero. Indeed,

if this were not true (and taxation were positive), then the tax rate would have to depend on .

We can therefore conclude that the social planner’s solution converges to a steady state in which

the debt level is , the tax rate is 0, and the public good level is .
19

The key take away point is that, while in the short run debt displays the counter-cyclical pattern

usually associated with the tax smoothing approach, this disappears in the long run. Moreover,

16Bohn (1990) establishes this result for a stochastic version of the tax smoothing model studied by Barro (1979).

Aiyagari et al (2002) show a similar result for the planner’s solution in a model very similar to ours. To ease the

comparison, however, note that the negative of their Lagrangian multiplier  corresponds to our MCPF minus one.

It should also be noted that in their model the planner’s MCPF follows a supermartingale because the upper bound

on debt will bind with positive probability. This however depends on the fact that  is an exogenous process. This

can not happen in our framework because  is endogenous.
17While tax rates being lower in booms than in recessions (i.e., ◦()  ◦()) seems natural, it may not be

immediate how to prove it. Since the planner’s solution is a special case of the political equilibrium when  = , the

result will follow from Lemma 2 in Section 4.3.1.
18 If the MCPF is linear in the tax rate, as assumed in Bohn (1990), the tax rate behaves as a martingale as was

conjectured by Barro (1979).
19A similar conclusion holds when public spending shocks rather than revenue shocks are the driver of fiscal policy

(see Aiyagari et al (2002) and Battaglini and Coate (2008)). However, with public spending shocks, optimal public

good spending is uncertain and the government accumulates sufficient assets to finance the highest level of such

spending. Interest earnings in excess of optimal public good spending are rebated back to the citizens via a uniform

transfer. In this model, the planner does not need to use transfers since optimal public good spending is constant.
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all other fiscal policy variables are also constant. This observation underscores the point noted in

Section 2: when cyclical variations are not perfectly anticipated, the tax smoothing approach has

difficulty explaining cyclical fiscal policy in the long run.

4 Theory

4.1 Political equilibrium

4.1.1 Definition

To characterize behavior when policies are chosen by a legislature, we look for a symmetric Markov-

perfect equilibrium. In this type of equilibrium any representative selected to propose at round

 ∈ {1  } of the meeting at some time  makes essentially the same proposal and this depends
only on the current level of public debt () and the state of the economy (). Similarly, at the voting

stage of a round , the probability a legislator votes for a proposal depends only on the proposal

itself and the state ( ). As is standard in the theory of legislative voting, we focus on weakly

stage undominated strategies, which implies that legislators vote for a proposal if they prefer it

(weakly) to continuing on to the next proposal round.

An equilibrium can be described by a collection of proposal functions { (), (), (),
()}=1 which specify the proposal made by the proposer in round  of the meeting in a period in
which the state is ( ). Here  () is the proposed tax rate, 


() is the public good level, 


() is

the new level of public debt, and () is a transfer offered to the districts of −1 randomly selected
representatives. The proposer’s district receives the surplus revenues (


() 


() 


(); ) −

( − 1)(). Associated with any equilibrium are a collection of value functions {()}+1=1 . For

 ∈ {1  } the value function () specifies the expected future payoff of a legislator at the

beginning of proposal round  in a period in which the state is ( ). By contrast, the value

function +1 () represents the expected payoff of a legislator after the round  proposal has been

rejected.

We focus, without loss of generality, on equilibria in which at each round , proposals are

immediately accepted by at least  legislators, so that on the equilibrium path, no meeting lasts more

than one proposal round. Accordingly, the policies that are actually implemented in equilibrium

are those proposed in the first round. In what follows, we will drop the superscript and refer to the

round 1 value function as () and the round 1 policy proposal as { (), (), (), ()}.
In equilibrium, there is a reciprocal feedback between the policy proposals { (), (), (),

()}=1 and the associated value functions {()}+1=1
. On the one hand, given that future payoffs

are described by the value functions, the prescribed policy proposals must maximize the proposer’s

payoff subject to the incentive constraint of getting the required number of affirmative votes and

the appropriate feasibility constraints. Formally, given {()}+1=1
, for each proposal round  and
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state ( ), the proposal { (), (), (), ()} must solve the problem:

max
()

(  ) +(   ; )− ( − 1) + [() + ()]

 (  ) + + [() + ()] ≥ +1 ()

(   ; ) ≥ ( − 1)  ≥ 0 &  ∈ [ ]
The first constraint is the incentive constraint and the remainder are feasibility constraints. The

formulation reflects the assumption that on the equilibrium path, the proposal made in round 1 is

accepted.

On the other hand, the value functions {()}+1=1
are themselves determined by the equilibrium

policy proposals. The legislators’ round 1 value functions () and () are determined recursively

using { (), (), (), ()} by the system:

() = ( () ())+
( () () (); )


+[(())+(())]  ∈ {}

(4.1)

To understand this recall that a legislator is chosen to propose in round 1 with probability 1. If

chosen to propose, he obtains a payoff in that period of

( () ()) +( () () (); )− ( − 1)()
If he is not chosen to propose, but is included in the coalition of legislators whose districts receive a

transfer, he obtains ( () ())+(), and, if he is not included, he obtains just ( () ()).

The probability that his district will receive a transfer, conditional on not being chosen to propose,

is (− 1)(− 1). Taking expectations, the pork barrel transfers () cancel and the period payoff
is as described in (4.1).

The value functions for rounds 2 and beyond are determined by the associated policy proposals

and the round 1 value functions. For all proposal rounds  = 1   − 1 the expected future payoff
of a legislator if the round  proposal is rejected is

+1 () = 
¡
 +1 () +1 ()

¢
+
(

+1
 () +1 () +1 (); )


+[(

+1
 ())+(

+1
 ())]

This reflects the assumption that, in the out-of-equilibrium event that play reaches proposal round

 + 1, the proposal made at that point will be immediately accepted. Recall that if the round 

proposal is rejected, the assumption is that a legislator is appointed to choose a default tax rate,

public good level, level of debt and a uniform transfer. Thus,

+1 () = max
()

½
(  ) +

(   ; )


+ [() + ()] : (   ; ) ≥ 0 &  ∈ [ ]

¾


We say that an equilibrium is well-behaved if the associated round 1 legislators’ value functions

 and  are continuous and concave on [ ]. In what follows, we will first characterize a well-

behaved equilibrium and then establish the existence of such an equilibrium. Henceforth, when we

refer to an “equilibrium”, it is to be understood that it is well-behaved.
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4.1.2 Characterization

To understand equilibrium behavior, note that to get support for his proposal the proposer must

obtain the votes of − 1 other representatives. Accordingly, given that utility is transferable, he is
effectively making decisions to maximize the utility of  legislators. It is therefore as if a randomly

chosen minimum winning coalition (mwc) of  representatives is selected in each period and this

coalition chooses a policy choice to maximize its aggregate utility. Formally, this means that, when

the state is ( ), the tax-public good-debt triple (   ) solves the problem

max(  ) +
(;)


+ [() + ()]

 (   ; ) ≥ 0 &  ∈ [ ] 
(4.2)

In any given state ( ), there are two possibilities: either the mwc will provide pork to the

districts of its members or it will not. Providing pork requires reducing public good spending or

increasing taxation in the present or the future (if financed by issuing additional debt). When 

is high and/or the economy is in a recession, the opportunity cost of revenues may be too high to

make this attractive. In this case, the mwc will not provide pork, so (   ; ) = 0. From (4.2),

it is clear that the outcome will then be as if the mwc is maximizing the utility of the legislature

as a whole. Indeed, the policy choice will be identical to that a social planner would choose in the

same state and with the same value function.

When  is low and/or the economy is in a boom, the opportunity cost of revenues is lower. Less

tax revenues need to be devoted to debt repayment when  is low and both current and expected

future tax revenues are more plentiful when the economy is in a boom. As a result, the mwc will

allocate revenues to pork and policies will diverge from those that would be chosen by a planner.

Interestingly, it turns out that this diversion of resources toward pork, effectively creates lower

bounds on how low the tax rate and debt level can go, and an upper bound on how high the level

of the public good can be.

To show this, we must first characterize the policy choices that the mwc selects when it provides

pork. Consider again problem (4.2) and suppose that the constraint (   ; ) ≥ 0 is not binding.
Using the first-order conditions for this problem, we find that the optimal tax rate ∗ satisfies the
condition that

1


=
[ 1−∗
1−∗(1+) ]




The condition says that the benefit of raising taxes in terms of increasing the per-coalition member

transfer (1) must equal the per-capita MPCF. Similarly, the optimal public good level ∗ satisfies
the condition that

 (∗)− =





This says that the per-capita benefit of increasing the public good must equal the per-coalition

member reduction in transfers that providing the additional unit necessitates. The optimal public
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debt level ∗ satisfies the condition that

∗ = argmax{



+ [() + ()] :  ∈ [ ]} (4.3)

The optimal level balances the benefit of increasing debt in terms of increasing the per-coalition

member transfer with the expected per-capita cost of an increase in the debt level.

We can now make precise how the legislature’s ability to divert resources toward pork-barrel

spending effectively creates endogenous bounds on the policy choices.

Proposition 1. The equilibrium value functions () and () solve the system of functional

equations

() = max
()

⎧⎨⎩ (  ) +
(;)


+ [() + ()]

 (   ; ) ≥ 0,  ≥ ∗,  ≤ ∗ &  ∈ [∗ ]

⎫⎬⎭  ∈ {} (4.4)

and the equilibrium policies { (), (), ()} are the optimal policy functions for this program.
Thus, the equilibrium policy choices solve a constrained planner’s problem in which the tax

rate can not fall below ∗, the public good level can not exceed ∗, and debt can not fall below
the state contingent threshold ∗.

20 However, there is a fundamental difference with the planner’s

problem (3.1). The thresholds that constrain the policies are endogenous because they depend

on the economic fundamentals and, in the case of ∗ and ∗ , on the equilibrium: so rather than
being constraints that affect the value function, they are determined simultaneously with the value

function.

Given Proposition 1, the nature of the equilibrium policies in a given state  is clear. For any

equilibrium, define ∗ to be the value of debt such that the triple (
∗ ∗ ∗) satisfies the constraint

that (
∗ ∗ ∗; ) = 0. This is given by:

∗ =
(

∗) + ∗ − ∗

1 + 
 (4.5)

Then, if the debt level  is such that  ≤ ∗ the tax-public good-debt triple is (
∗ ∗ ∗) and the net

of transfer surplus (
∗ ∗ ∗; ) is used to finance transfers. If   ∗ the budget constraint binds

so that no transfers are given. The tax rate and public debt level strictly exceed (∗ ∗) and the
public good level is strictly less than ∗. In this case, therefore, the solution can be characterized
by obtaining the first order conditions for problem (4.4) with only the budget constraint binding.

These are conditions (3.2), (3.3), and (3.4) except with the equilibrium value functions. It is easy

to show that the tax rate and debt level are increasing in , while the public good level is decreasing

in .21

20This result extends Proposition 4 of Battaglini and Coate (2008) by showing that when shocks are persistent the

lower bound on debt in the constrained planning problem will be state-contingent.
21Details are available from the authors upon request.
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4.1.3 Existence

To prove the existence of an equilibrium, we first establish that the conditions of Proposition 1 are

not only necessary but also sufficient.

Proposition 2. Suppose that the value functions () and () solve the system of functional

equations (4.4) where ∗ and ∗ satisfy (4.3). Then, there exists an equilibrium in which the round
1 value functions are () and () and the round 1 policy choices { (), (), ()} are the
optimal policy functions for program (4.4).

Using Proposition 2 we can now establish the existence of an equilibrium by showing that there

must exist a pair of value functions () and () and a pair of debt thresholds 
∗
 and ∗ such

that: (i) () and () solve (4.4) given ∗ and ∗ , and, (ii) 
∗
 and ∗ solve (4.3) given ()

and (). In this way, we obtain:

Proposition 3. There exists an equilibrium.

4.2 Tax smoothing in political equilibrium

As discussed in Section 3, the social planner smooths taxation over time by equalizing the current

MCPF with the expected MCPF next period. This implies that the MCPF behaves as a martingale

and the tax rate as a supermartingale. In this sub-section, we explain how political decision making

distorts tax smoothing.

Note first that in political equilibrium, whether the mwc is providing pork or not, the debt level

must be such that the MCPF today equals the expected marginal cost of debt tomorrow; that is,22

1−  ()

1−  () (1 + )
= −[0(()) + 

0
(())] (4.6)

If, for example, the MCPF exceeded the expected marginal cost of debt, the mwc could shift the

financing of its spending program from taxation to debt and make each coalition member better

off.

To develop the implications of equation (4.6), the next step is to develop an expression for the

marginal cost of debt in each state.

Lemma 1. For each state of the economy  ∈ {}, the equilibrium value function (·) is
differentiable for all  such that  6= ∗. Moreover:

−0() =
⎧⎨⎩ (

1−()
1−()(1+))(

1+

) if   ∗

(1+

) if   ∗



22Again, in deriving (4.6) we are ignoring the upperbound  ≤ . In the Appendix (Section 8.5) we prove that

this is without loss of generality.
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To understand this, recall that when the initial debt level  exceeds ∗, there is no pork, so to
pay back an additional unit of debt requires an increase in taxes. This means that the cost of an

additional unit of debt is equal to the repayment amount 1+ multiplied by the per capita MCPF.

By contrast, when  is less than ∗, pork will be reduced to pay back additional debt since that is
the marginal use of resources. The cost of an additional unit of debt is thus equal to 1+ multiplied

by the expected per capita reduction in pork which is 1. Notice that the value function is not

differentiable at  = ∗. The left hand derivative at  = ∗ is equal to (1 + ) and the right hand

derivative is equal to (1 + ) (since the tax rate  () equals 
∗ at  = ∗).

23 This discontinuity

reflects the fact that increasing taxes is more costly than reducing pork because the marginal cost

of taxation exceeds 1.

Using Lemma 1, we can rewrite equation (4.6) as follows:

1−  ()

1−  () (1 + )
= Pr

¡
0 s.t. () ≤ ∗0 |

¢
+

X
0 s.t. ()∗0

0
1−  0(())

1−  0(()) (1 + )
 (4.7)

Now recall from the characterization that when () is less than or equal to ∗
0 , the tax rate

 0(()) will equal 
∗. Thus, equation (4.7) can be rewritten as:24

1−  ()

1−  () (1 + )
= 

∙
1−  0(())

1−  0(()) (1 + )
|
¸
− Pr ¡0 s.t. () ≤ ∗0 |

¢ ∙ ∗

1− ∗ (1 + )

¸


(4.8)

The current MCPF is therefore less than or equal to the expected future MCPF. This yields:

Proposition 4. In any equilibrium, the marginal cost of public funds is a submartingale; that is,

1−  ()

1−  () (1 + )
≤  [

1− (())

1− (()) (1 + )
] + [

1− (())

1− (()) (1 + )
] (4.9)

with the inequality strict when  is sufficiently low.

Why when the inequality in equation (4.9) is strict does the mwc not find it optimal to raise

taxes and reduce debt in order to equalize the current MCPF with the expected future MCPF?

The answer is that if next period’s mwc is providing pork, the correspondent increase in revenues

will simply be diverted toward pork. This creates a wedge between the current MCPF and the

expected future MCPF. The generality of this intuition indeed suggests that a similar result would

be true in any dynamic political economy model of debt.

What can we say about the evolution of the tax rate? As noted in the discussion of the planner’s

solution, when the MCPF obeys a martingale, the tax rate behaves as a supermartingale. In states

( ) such that () is less than or equal to 
∗
0 for some 

0 however, two forces push the difference

23The set of sub-gradients of the value function  at  = ∗ is [−( 1+ )−( 1+

)].

24Equation (4.8) is obtained by adding and subtracting Pr (0 s.t. () ≤ ∗0 | )


1−∗
1−∗(1+)


from the right hand

side of (4.7).
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between the current and expected tax rate in opposite directions: the convexity of the MCPF

pushes the difference up, and the submartingale property of the MCPF pushes it down. As we

prove in the following proposition, there are states in which the first force dominates, implying that

the current tax rate is strictly less than the expected future tax rate. This yields:

Proposition 5. The tax rate is not a martingale of any type; that is, there exist states such that

next period’s expected tax rate exceeds the current tax rate and states such that the opposite is true.

By the same logic, it is easy to prove that debt and the public good level will not be martingales

of any type as well. In Section 4.3 we will show that the distribution of the MCPF, the tax rate,

the public good level and debt all converge to a unique stationary distribution.

4.3 Cyclical behavior of fiscal policies

From the characterization in Section 4.1, we understand the nature of the equilibrium policies in a

given state . This sub-section first explains how policies compare across states. It then use this

understanding to explore the behavior of fiscal policies over the business cycle.

4.3.1 Comparing policies in booms and recessions

To compare policies across states, the key step is to understand how the political constraints

change over the cycle, i.e. the relationship between ∗ and 
∗
 . Using Lemma 1 and the first order

conditions for problem (4.3), we can show that:

Lemma 2. In any equilibrium: ∗  ∗ ≤ ∗ ≤ ∗ .

The proof of this result also implies that if ∗ is less than ∗ , then ∗ is less than ∗ . Thus, the
only circumstance in which ∗ equals 

∗
 is when both equal ∗ . While this is possible, it only

arises when  is sufficiently close to  to make a recession barely persistent. Under these

circumstances, legislators would not find it optimal to borrow less when providing pork during a

recession than during a boom because the recession is sufficiently likely to revert to a boom. From

here on, we will assume that the transition probabilities are such that ∗ is less than ∗ which we

see as the most interesting case.25

With Lemma 2 in hand, we can provide a complete picture of how fiscal policy compares across

booms and recessions for any level of debt . Along with public spending, taxes and debt, we are

interested in the primary surplus which is the difference between tax revenues and public spending

other than interest payments. In our model, it is the difference between tax revenues and spending

on the public good and pork. Using the budget constraint, we may write the primary surplus when

the state of the economy is  and the current debt level is  as () = (1 + )− ().

25A sufficient condition for this to be true is that recessions are sufficiently persistent, that is  is sufficiently

high.
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When  is less than ∗ the mwc provides pork in both booms and recessions (since 
∗
  ∗

by Lemma 2). In this case, the tax rate and public good provision are constant across states,

respectively at ∗ and ∗, while debt will be higher in a boom than in a recession (respectively, ∗
versus ∗). Tax revenues will be higher in a boom and these extra revenues, together with the extra
borrowing, will be used to finance higher levels of pork-barrel spending. The primary surplus will

be lower in a boom because borrowing is higher. When  is between ∗ and ∗ the mwc provides

pork in a boom but not in a recession. In this case, taxes will be higher in a recession and public

good provision will be lower. Over this interval of initial debt levels, the new level of debt will be

constant in a boom, but increasing in a recession. We show in the Appendix that there will be a

threshold debt level b between ∗ and ∗ such that new debt will be higher in a recession if and

only if  exceeds b. Tax revenues will be higher in a boom when  exceeds b, while the primary
surplus will be higher in a boom if and only if  exceeds b. Finally, when  exceeds ∗ the mwc

does not provide pork in either state. In this range, public good levels will be lower in a recession

(()  ()), tax rates will be higher (()  ()), and public borrowing will be higher

(()  ()). Tax revenues and the primary surplus will be higher in a boom.

4.3.2 Policy dynamics

With this understanding of how policies compare across states, we can now turn to the dynamic

evolution of policy. Clearly, the key to understanding the dynamics is to understand how debt

behaves. The cyclical behavior of all the remaining fiscal policies will follow from the behavior of

debt given the results we already have.

The fundamental result concerning the dynamic evolution of debt is the following:

Lemma 3. In any equilibrium: (i) () exceeds  for all  ∈ [ ), and, (ii) () exceeds  for
all  ∈ ( ∗) and () is less than  for all  ∈ (∗  ].
Part (i) implies that the debt level always increases in a recession. Intuitively, if we are in a recession

today, the economic environment can only improve in the future. This makes it worthwhile for the

legislature to increase debt. Part (ii) implies that the debt level decreases in a boom if the initial

debt level exceeds ∗ and increases otherwise. Figure 1 graphs the functions () and ().

We can now infer the cyclical behavior of debt. Note first that, in the short run, it is possible

for debt to behave pro-cyclically - jumping up when the economy enters a boom. To see this,

suppose that the economy’s initial level of debt (0) is less than ∗ and the economy starts out

in a recession. Then, once the first boom arrives, if the level of accumulated debt remains less

than ∗ , debt will increase to 
∗
 upon entering the boom. The boom increases both current and

expected future productivity, which reduces the expected marginal cost of debt. Debt-financed pork

instantaneously becomes more attractive for the mwc because of the downward shift in the expected

marginal cost of borrowing. Debt jumps to a level at which equality between the marginal benefit
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Figure 1: Equilibrium dynamics

of pork and the expected marginal cost of borrowing is reestablished and, during this process, a

“pork-fest” occurs. This is very similar to the logic underlying Lane and Tornell’s voracity effect.

In the long run, however, debt must behave counter-cyclically - decreasing when the economy

enters a boom and increasing when it enters a recession.26 For once such a pro-cyclical debt

expansion has occurred it can never happen again. The damage of the pork-fest to public finances

is permanent. This is clear from Figure 1. The debt level is bounded below by ∗ in a boom and,

as demonstrated in Lemma 3, it is increasing in a recession. In the long-run, therefore, once the

first boom has occurred and debt has jumped up to ∗ , fiscal policy will behave counter-cyclically:
in a recession, debt will increase and, in a boom, debt will decrease down to ∗ and then remain

constant. Moreover, we can show that no matter what the economy’s initial debt level, the same

distribution of debt emerges in the long run. To summarize:

Proposition 6. In any equilibrium, the debt distribution strongly converges to a unique, non

degenerate, invariant distribution with support on [∗  ]. The dynamic pattern of debt is counter-
cyclical. When the economy enters a recession, debt will increase and will continue to increase as

long as the recession persists. When the economy enters a boom, debt decreases and, during the

boom, continues to decline until it reaches ∗ .

26As noted earlier, the voracity effect papers just consider the implications of a one time positive income shock.

21



Why can we not have recurrent episodes of pro-cyclical fiscal policy (“pork fests”) in the long

term? As we said, these episodes occur only after the arrival of an unexpected increase in produc-

tivity that increases politicians’ expectation of future revenues and triggers a permanent increase

in debt. In our economy there is no permanent growth, so there is a limit to these positive produc-

tivity “surprises”. Specifically, such a surprise only occurs the first time the economy moves from

a recession to a boom. Once this has happened, the level of debt already incorporates the effects

of potential productivity growth. In an economy with permanent growth, positive technological

surprises may lead to constant (though stochastic) increases in productivity. We conjecture that in

such an economy pro-cyclical “pork fests” will occur even in the long run whenever the upperbound

on productivity is increased.27 The result in Proposition 6 is therefore best interpreted as applying

to a mature economy in which these growth effects are not a dominant force.

Since the remaining fiscal policies are all functions of debt, Proposition 6 implies that the

distribution of these policies will also be invariant in the long term. Combining Proposition 6

with our understanding of equilibrium policies from the previous section, allows us to predict their

long-run cyclical behavior. We deal first with taxes and public good spending.

Proposition 7. In any equilibrium, in the long run, when the economy enters a recession, the tax

rate increases and public good provision decreases. Moreover, the tax rate will continue to increase

and public good provision will continue to decrease as long as the recession persists. When the

economy enters a boom, the tax rate decreases and public good provision increases. During the

boom, the tax rate continues to decline and public good provision continues to increase until they

reach, respectively, ∗ and ∗.

The cyclical behavior of the tax rate determines the dynamics of the MCPF. Proposition 7

implies that the MCPF will increase when the economy enters a recession and continue to increase

as long as the recession persists. At any point in time, the MCPF is finite because the tax rate is

always lower than the revenue maximizing level (which is 1(1+)). In a sufficiently long recession,

however, the tax rate may become arbitrarily close to 1(1 + ), and so the MCPF may become

arbitrarily large.28 When the MCPF is large, however, it must behave as a martingale. For, by

then,  will be bigger than ∗ . Proposition 7 also implies that the MCPF will decrease when the
economy enters a boom and continue to decline until it reaches its floor level (which is ). Along

this decreasing path, the MCPF will eventually start to behave as a strict submartingale. After a

27The behavior of fiscal policy in such an economy is an interesting subject for further research.
28 It is perhaps worthwhile to point out that the fact the MCPF is arbitrarily large when  is close to the peak of

the Laffer curve only means that at that point tax revenues can not be further increased by increasing  . Moreover,

since it can be shown that sup() is unbounded, the standard submartingale convergence theorem does not

apply and so the MCPF does not converge to a constant (see for example Shiryayev (1996)); and this does not imply

that the MCPF converges to an arbitrarily large number. Indeed it is clear that the MCPF must recurrently drop to

its floor level 

in the long run.
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Figure 2: The long run behavior of primary surplus

sufficiently long recession, however, the MCPF will temporarily continue to behave as a martingale

even when the economy returns to a boom because it will take time for debt to reduce to a level

such that the probability of the event {( ) |()  ∗ } is positive.
We turn next to the cyclical pattern of pork-barrel spending.

Proposition 8. In any equilibrium, in the long run, pork-barrel spending will not occur during a

recession. Moreover, it will only occur during a boom when debt has fallen below ∗ . If ∗ = ∗ ,
there will be no pork-barrel spending in the long run.

Pork-barrel spending will not occur during a recession in the long-run because the debt level is at

least as large ∗ and this exceeds ∗. There will be no pork in the long-run if 
∗
 = ∗ because

then it is not possible for debt to fall below ∗ .
When combined with the dynamic pattern of public good spending described in Proposition 7,

an important implication of Proposition 8 is that total public expenditure (which includes pork-

barrel spending and public good provision) is pro-cyclical. The equilibrium changes in public

spending and taxes therefore serve to amplify the business cycle. These predictions are distinctive

and serve to nicely differentiate the predictions of our neoclassical theory from what would be

expected if government were following a Keynesian counter-cyclical fiscal policy. For, in a recession,

a Keynesian government would reduce taxes and increase public spending to bolster aggregate

demand.

Our final fiscal policy of interest is the primary surplus.
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Proposition 9. In any equilibrium, in the long run, when the economy enters a recession, the

primary surplus jumps down and then starts gradually increasing. When the economy enters a

boom, the primary surplus jumps up and then starts gradually declining until it reaches a minimal

level of ∗ .

This long run behavior is illustrated in Figure 2, which is drawn under the assumption that ∗ is

positive. Notice that because in long run equilibrium debt always exceeds ∗ , the primary surplus
will be larger in a boom than a recession for any given level of observed debt.29

5 Quantitative analysis

We now turn to the quantitative assessment of the theoretical model.30 The model is calibrated

to the U.S. economy and its predictions compared to the data. We assess the performance of the

model in two main areas. First, explaining the distribution of debt. Second, explaining the cyclical

behavior of debt, taxes, and public spending, which includes their volatility, autocorrelation, and

correlation with output.

5.1 Empirical facts

We study the U.S. economy over the post-war period: from 1948 to 2011. Figure 3 and Table 1

present an overview of the behavior of debt, taxes, and public spending during the relevant time

period. We measure debt as total outstanding federal debt not held by government accounts, taxes

as the total federal revenue/GDP ratio, and public spending as total federal expenditures less net

interest on debt.31 Two features emerge. First, the debt/GDP ratio is persistently higher than 24%

and, on average, is equal to 42.4%. Second, there is high volatility and strong countercyclicality of

debt. As reported in Table 1, the correlation between debt and GDP is negative and statistically

significant. The revenue/GDP ratio is strongly procyclical and less volatile than the debt/GDP

ratio. Revenue is also strongly procyclical—its correlation with GDP is 0.77. Public spending is

nearly acyclical, and has a lower volatility than debt and revenue.

29This follows from the results in section 4.3.1 once it is observed that  is smaller than ∗ .
30Our quantitative analysis complements the work of Azzimonti, Battaglini, and Coate (2009) who calibrate the

Battaglini and Coate (2008) model. The focus of the Azzimonti et al paper is to provide a quantitative assessment

of the case for imposing a balanced budget rule in the Battaglini and Coate model. Since the driver of fiscal policy is

independent and identically distributed spending shocks, Azzimonti et al calibrate their model by matching moments

of peacetime and wartime spending, as well as moments of the debt distribution. By contrast, the purpose of this

paper is to explore the cyclical behavior of fiscal policies and the driver of fiscal policy is persistent productivity

shocks. Thus, the key to our calibration exercise is matching the cyclical properties of GDP.
31Data sources and detailed definitions of fiscal variables are provided in the Appendix.
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Figure 3: US fiscal policy over the business cycle, 1948-2011

Std Correlation with output

Debt
GDP

Spending
GDP

Revenue
GDP

Debt
GDP

Spending
GDP

Revenue
GDP

3.10 0.73 0.80 -0.44 -0.52 0.51

Debt Spending Revenue Debt Spending Revenue

6.67 3.74 5.97 -0.35 0.05 0.77

Table 1. Empirical facts about fiscal variables32

5.2 Model parameterization

We set the discount factor  to 1/1.06, which is a common choice in the real business cycle literature

(Jaimovich and Rebelo (2009)). This implies that the annual interest rate on bonds  is 6%. The

elasticity of labor supply, , is set to 2.25, which is in a mid-range of parameters used in the

literature (see, for example, Greenwood, Hercowitz and Huffman (1988) and Jaimovich and Rebelo

(2009)). The parameters , , and  are scale parameters that do not directly affect any of our

32All data are in logs and HP-filtered. All correlations are statistically significant at the 1% level, except for the

correlation of spending and GDP. The latter correlation is not statistically significant.
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results. We set the first two to 1, and the third to 100. The parameter  is set to 51, implying that

the legislature operates by simple majority rule.33

std(GDP) Debt
GDP

Spending
GDP

Revenue
GDP

Avg. length of

a downturn

% time in

a downturn

Data 2.22 42.4 17.4 18.0 2.2 1/3

Model 2.22 43.2 17.5 20.1 2.2 1/3

Table 2. Calibration: Matching Moments

We calibrate five parameters that are specific to the model: the persistence of a boom,  ,

and a recession, ; the productivity of the economy in a boom  , and the two parameters

governing the relative value and elasticity of the public good,  and . The persistence parameters

are chosen to match the average frequency and length of downturns in the data. To this end, the

probability of transiting from a boom to a recession and from a recession to a boom are respectively

chosen to be 22% and 48%.34 The remaining parameters  , , and  are jointly chosen to

minimize the distance between the model generated and empirical values of three variables: the

standard deviation of (HP-filtered) output, the average debt/GDP ratio, and the average public

spending/GDP ratio. Our search, performed over a fine grid, yields the following parameter values:

 = 10162  = 684 and  = 40 As Table 2 reports, the model comes close to matching the

targeted moments. In addition, though not explicitly targeted in the calibration, the average tax

rate in the model (as measured by the ratio of revenue to GDP) is 20.1% which is close to the

18.0% average in the data.

5.3 Results

We begin by discussing the distribution of debt. Figure 4 compares the long run distribution of

the debt/GDP ratio as well as its empirical counterpart. The average debt/GDP ratio, explicitly

targeted in the calibration, is close to that in the data. Though not explicitly targeted, the long

run distribution of this variable is broadly consistent with the empirically observed one. Finally,

the lowest level of debt in the model is 17% of GDP. In the data, the lowest level of the debt/GDP

ratio is 24%.

33Our results are similar for choices of  in the range 51 to 60.
34The model’s predictions would be very similar if we used an alternative calibration for the technology process,

e.g., discretized version of the Fernald’s (2012) TFP series.
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Figure 4: The distribution of the debt/GDP ratio

Std Correlation with output

Debt
GDP

Spending
GDP

Revenue
GDP

Debt
GDP

Spending
GDP

Revenue
GDP

1.45 0.38 0.05 -0.85 -0.999 -0.67

Debt Spending Revenue Debt Spending Revenue

1.74 0.10 2.08 -0.46 0.65 0.997

Table 3. Model Generated Moments

We next turn to the cyclical behavior of fiscal policy variables. Table 3 reports the model

generated second moments of fiscal variables. Comparing with the data in Table 1, we see that

the volatility of all fiscal policy variables are smaller than their empirical counterparts. In both

the model and the data, debt is strongly counter-cyclical. For the debt/GDP ratio, the strength of

correlation is higher in the model, with the model picking up twice the empirical correlation. The

correlation of debt generated by the model is more closely aligned with the data. Public spending

is positively correlated with GDP in both the model and the data, but the correlation is much

weaker in the data, and in fact is not statistically significant. Thus, the model’s prediction of pro-

cyclical public spending is not supported. The tax rate (i.e., revenue/GDP) is strongly negatively
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correlated with GDP in the model, but positively correlated in the data, so the model’s prediction

of a counter-cyclical tax rate is also not supported.

5.4 Discussion

The model’s main failures lie in its predictions of pro-cyclical public spending and counter-cyclical

tax rates. As shown in Propositions 7 and 8, these predictions are unambiguous theoretical results.

The spending prediction is perhaps the less troubling of the two since, as discussed in Section

2, the literature finds that, on average, public spending in developed countries is indeed slightly

pro-cyclical. The tax prediction, by contrast, appears to also be at odds with the data from other

developed countries. Furceri and Karras (2011) in a study of 26 OECD countries over the period

1965-2003 report finding no statistically significant correlations between effective tax rates and

GDP.35

One response to these failures, is to try to downplay them by noting that the tax revenue and

spending data reflect considerations outside the model.36 On the spending front, outlays on certain

government programs (such as unemployment insurance, food stamps, and welfare) automatically

go up during a recession. Thus, counter-cyclical outlays on these programs reflect their basic

design rather than a decision by legislators to spend more. On the revenue side, the receipts

from some non-labor income taxes (such as corporate taxes) may be expected to rise more than

proportionately with GDP during a boom. This could even be true for labor income taxes, since

rates are progressive. This effect could create the impression that rates were higher in a boom,

even if legislators were actually reducing rates.

Another response is to see the failures as reflecting more basic problems with the model. For

example, the model’s simplifying assumption that utility is linear in consumption may be partially

responsible for the prediction of a counter-cyclical tax rate. With concave utility over private

consumption, consumption smoothing over time is welfare improving. To smooth consumption,

policy-makers might want to reduce taxes to offset the effects of negative productivity shocks

rather than increasing them to generate revenue. More fundamentally, one may point to the model’s

simplistic view of the labor market which precludes a role for activist fiscal policy. Recent experience

around the world suggests that policy makers and politicians are generally optimistic about the

potential fiscal policy has to mitigate unemployment. To be successful, a positive model may need

35Furceri and Karras (2011) was written in response to an earlier version of this paper. The authors interpret their

evidence as supportive of the basic tax smoothing model with constant tax rates. They distinguish this from our

political economy theory and a Keynesian theory which would suggest a pro-cyclical tax rate. As noted in Section

2, the predictions of the basic tax smoothing model are not robust to introducing unanticipated cyclical variation

which would seem to disqualify it on a priori grounds. Moreover, as we have seen, in the U.S. tax rates are indeed

pro-cyclical.
36We thank Christian Hellwig for making this point.
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to reflect this. This suggests that it would be interesting to look at the political economy of fiscal

policy in a model with labor market frictions.

6 Comparison with an AMSS-style model

As discussed in Section 2, in a world in which spending shocks drive fiscal policy, Aiyagari, Marcet,

Sargent and Seppala (2002) show that the tax smoothing model can generate plausible fiscal dy-

namics if the government faces a lower bound on debt. This suggests that an acceptable positive

model of the behavior of fiscal policy over the business cycle might be obtained by simply adding

a debt constraint to the planning problem studied in Section 3.2. Indeed, at first glance, Propo-

sitions 1 and 2 might be seen as providing a theoretical underpinning for this practice. However,

there are in fact substantial differences between the constrained planning problem associated with

the political equilibrium and the problem suggested by Aiyagari, Marcet, Sargent and Seppala. In

particular, the constraints in Propositions 1 and 2 apply to all policy variables (debt, taxes, and

public good provision), depend on the state of the economy, and are endogenous.

A natural question to ask is how these differences actually matter? To address this question, we

added a debt constraint to the planning problem studied in Section 3.2 and calibrated the model

to the data discussed in Section 5. The interesting point to note is that this calibration exercise

produces the same results as for the political economy model. In particular, the debt lower bound

chosen by the calibration is exactly the ∗ generated by the political economy model and the

parameters  , ,  ,  and  are the same. Moreover, the analogues to Tables 2 and 3 are

identical. For this data, then the AMSS-style model fits identically to the political economy model.

This is a puzzling finding given the differences in the constrained planning problems associated

with the political equilibrium and the AMSS-style model. The explanation is that in the calibration

of the political economy model, ∗ = ∗ . This implies that there is no pork-barrel spending in the
long run. Indeed, all pork-barrel spending takes place in the initial period and, if the economy starts

off in recession, the first time the economy enters a boom. What this means is that the constraints

on taxes and the public good are never binding. All that is relevant is the ∗ constraint. The lack

of pork in long run equilibrium reflects the fact that there are only two productivity states in the

model. The productivity difference between the two states is sufficiently low and the persistence of

the high state sufficiently high, that legislators have no incentive to restrain their pork consumption

in a boom in anticipation of a recession.

Importantly, however, even in this case, the two models have very different comparative static

implications. To illustrate this, suppose we are interested in forecasting the effects of a change in

labor regulations that implies a change in the elasticity of labor supply. The question of interest is

how fiscal policy and debt react? To answer this question, we start from the calibrated parameter

values which best fit our data. The model predictions for various levels of labor supply elasticity
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are presented in Table 4.

 2.15 2.2 2.25 2.3 2.35

Average Debt, % of GDP

PE -2.53 21.3 43.2 63.2 81.7

AMSS 52.8 47.7 43.2 39.1 35.5

Minumum Debt, % of GDP

PE -27.5 -4.00 16.7 35.6 52.3

AMSS 21.8 19.0 16.7 14.6 12.8

Table 4. Comparative Statics in PE versus AMSS-style models

What is striking is that the two models generate the exact opposite comparative statics predictions.

Under the political economy model reducing labor supply elasticity from its baseline level of 2.25 to

2.2 reduces the average debt/GDP roughly by a half. By contrast, the AMSS-style model predicts a

noticeable increase in debt/GDP. The same patterns hold for the lower bound on debt/GDP ratio:

under the political economy model it decreases, but in the AMSS-style model it increases.

The reason why the two models predict differently is explained by the bottom panel of Table

4. As we reduce the elasticity of labor supply, the politicians find it easier to extract taxes from

the citizens: hence taxes go up. However, GDP goes down, and hence spending (which does not

directly depend on labor supply) as a share of GDP increases. These forces reduce debt/GDP,

and in particular, its minimum value.37 In the AMSS-style model the opposite occurs: as the

elasticity is reduced, taxes go up and GDP down; but since the lower bound on debt is exogenous,

the debt/GDP ratio goes up.

The comparative statics exercise nicely illustrates the dangers of using an AMSS-style model

for policy analysis. While an AMSS-style model fits this particular data just as well as the political

economy model, it provides completely different comparative static implications. If the political

economy model captures the true decision-making process, the AMSS-style model may, therefore,

lead to inaccurate predictions. The point is that a theory that can help rationalize a given “data

point”, may not be well suited for comparative statics, making it less useful for policy predictions.

By providing a microfoundation for the political distortions, we have a theory of how the lower

bound of debt changes with the fundamentals.

37When ∗ = ∗ , which is the case in our calibration, the lower bound on debt can be expressed as ∗ =

(∗((1− ∗)) − ∗)  Defining  ∗ = ((1−∗)), we have that: ∗ ∗ =

∗ − ∗

∗



.

As  increases, the impact of the decline in  ∗ outweighs the increase in ∗ and hence ∗ ∗ declines.
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7 Conclusion

This paper has explored the implications of the political economy theory proposed in Battaglini and

Coate (2008) for the cyclical behavior of fiscal policy. This has required replacing public spending

shocks with productivity shocks and making these shocks persistent as opposed to independent and

identically distributed. While persistent shocks complicate the characterization of equilibrium, the

model remains tractable. In particular, equilibrium policy choices continue to solve a constrained

planning problem. The difference is that persistence makes the lower bound constraint on debt

state-contingent and this is key to understanding the cyclical behavior of fiscal policy.

The theoretical analysis yields three central predictions. First, in the long run, debt displays

a counter-cyclical pattern, increasing in recessions and decreasing in booms. A pro-cyclical debt

expansion can only arise the first time the economy moves from recession to boom. This is because

any increase in debt has permanent effects on public finances. Second, public spending displays

a pro-cyclical pattern, with spending increasing in booms and decreasing in recessions, while tax

rates display a counter-cyclical pattern decreasing in booms and increasing in recessions. The equi-

librium changes in public spending and taxes therefore serve to amplify the business cycle. Third,

equilibrium fiscal policies are such that the marginal cost of public funds obeys a submartingale.

The paper has assessed the quantitative implications of the theory by calibrating the model to

the U.S. economy using post WWII data. The model broadly matches the empirical distribution

of debt and also its high volatility and negative correlation with output. The success of the model

in explaining the cyclical behavior of public spending and the tax rate is much more limited.

Consistent with the data, the model implies that these fiscal variables are persistent and not very

volatile. However, the predictions of pro-cyclical spending and counter-cyclical taxation do not find

empirical support.

Finally, to assess the importance of micro-founded modeling of political decision-making, the

paper has compared the model with a benevolent government model in which, following the ap-

proach of Aiyagari, Marcet, Sargent and Seppala (2002), the government is assumed to face an

exogenous lower bound on debt. Interestingly, while the two models are far from theoretically

equivalent, the calibrated models deliver the same fit of the data. This reflects the fact that the

calibrated political economy model predicts no pork-barrel spending in the long run. However, the

two models have starkly different comparative static implications. These differences highlight the

importance of modelling the underlying political decision-making when predicting the implications

of changes in the underlying economic environment.

The paper shows that the Battaglini and Coate model produces a theory of the cyclical behavior

of fiscal policy that is only partially successful in explaining the data. Thus, this paper represents

only a step on the path toward a satisfactory positive theory of fiscal policy. There are a number

of directions in which future research on this topic might usefully go. Working within the general

framework of this paper, the counter-factual predictions concerning taxation may be resolved in
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a model with concave utility over consumption. More radically, the underlying economic model

might usefully be changed to incorporate a role for activist fiscal policy.
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A Appendix

A.1 Proof of Proposition 1

Let { (), (), (), ()}=1 be an equilibrium with associated value functions () and

(). It is enough to show that for  ∈ {}, { (), (), ()} solves the problem

max() (  ) +
(;)


+ [() + ()]

 (   ; ) ≥ 0,  ≥ ∗,  ≤ ∗ &  ∈ [∗ ]
(A.1)

where ∗ and ∗ satisfy (4.3). For then it would follow immediately from (4.1) that the value

functions () and () have the required properties.

We begin by making precise the claim made at the beginning of Section 4.1.2 that, given

transferable utility, the proposer is effectively making decisions to maximize the collective utility

of  legislators under the assumption that they get to divide any surplus revenues among their

districts.

Lemma A.1: Let { (), (), (), ()}=1 be an equilibrium with associated value func-

tions () and (). Then, for all states ( ), the tax rate-public good-public debt triple

( () 

() 


()) proposed in any round  solves the problem

max() (  ) +
(;)


+ [() + ()]

 (   ; ) ≥ 0 &  ∈ [ ] 
(A.2)

Moreover, the transfer to coalition members is given by

() = +1 ()− (

() 


())− 0(


())

Proof: The proof of this result is similar to the proof of an analogous result in Battaglini and

Coate (2008) and thus is omitted. A proof is available from the authors upon request.

As we argued in the text, if the constraint (   ; ) ≥ 0, is not binding, then the solution
to problem (A.2) is (∗ ∗ ∗). On the other hand, if the constraint is binding, then the solution
to this problem solves the problem

max() (  ) +
(;)


+ [() + ()]

 (   ; ) ≥ 0 &  ∈ [ ] 
(A.3)

Letting ∗ be as defined in (4.5), we conclude that { (), (), ()} = (∗ ∗ ∗) when  ≤ ∗
and solves (A.3) when   ∗. Thus, we need to show (i) that when  ≤ ∗ the solution to problem
(A.1) is (∗ ∗ ∗), and, (ii) that when   ∗ the constraints  ≥ ∗,  ≤ ∗ and  ≥ ∗ will not
be binding in problem (A.1). For (ii), note first that the solution to (A.3) when  = ∗ is (

∗ ∗ ∗)
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and second that the optimal tax rate and debt level for problem (A.3) are non decreasing in  and

the public good is non increasing in . For (i), note that when  ≤ ∗ the budget constraint cannot
be binding in problem (A.1) and, if the budget constraint is not binding, the individual constraints

 ≥ ∗,  ≤ ∗ and  ≥ ∗ must all bind. ¥

A.2 Proof of Proposition 2

Let e and e be a pair of value functions and e and e a pair of debt levels such that (i)e and e solve (4.4) given e and e, and, (ii) e and e solve (4.3) given e and e. Let
(e () e() e()) be the corresponding optimal policies that solve the program in (4.4). For each

proposal round  and state of the economy  =  define the following strategies:

( () 

() 


()) = (e () e() e());

for proposal rounds  = 1   − 1

() = (e () e() e(); );
and for proposal round 

 () = +1 ()− (e () e())−  [e(e()) + e(e())] ;
where

+1 () = max
()

⎧⎨⎩ (  ) +
(;)


+  [e() + e()]

s.t. (   ; ) ≥ 0 &  ∈ [ ]

⎫⎬⎭ 

Given these proposals, the legislators’ round one value functions are given by e and e. This
follows from the fact that

1() = (e () e()) + (e () e() e(); )


+

[e(e()) + e(e())] = e()
Similarly, the round  = 2   legislators’ value functions are given by e and e.

To show that { () () () ()}=1 together with the associated value functions {()}+1=1

describe an equilibrium, we need only show that for proposal rounds  = 1   the proposal

( () 

() 


() 


()) solves the problem

max
()

(  ) +(   ; )− ( − 1) + [e() + e()]
 (  ) + + [e() + e()] ≥ Υ+1

 ()

(   ; ) ≥ ( − 1)  ≥ 0 &  ∈ [ ]
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where Υ+1
 () = e() for  = 1  − 1 and Υ+1

 () = +1 (). We show this result only for

 = 1   − 1 — the argument for  =  being analogous.

Consider some proposal round  = 1   − 1. Let ( ) be given. To simplify notation, let

(b  b b b) = (e () e() e() (e () e() e(); )


)

Since e solves (4.3), it follows from the discussion in Section 4.1.2 (and it can easily be formally

verified) that (b  b b) solves the problem:
max
()

(  ) +
(;)


+ [() + ()]

 (   ; ) ≥ 0 &  ∈ [ ]

and that b = e()− (b  b)− [e(b) + e(b)]
Suppose that (b  b b b) does not solve the round  proposer’s problem. Then there exist some

( 0 0 0 0) which achieves a higher value of the proposer’s objective function. We know that

0 ≥ e()− (
0 0)− [e(0) + e(0)]. Thus, we have that the value of the proposer’s

objective function satisfies

(
0 0) +(

0 0 0; )− ( − 1) 0 + [e(0) + e(0)]
≤ {( 0 0) + [e(0) + e(0)]}+(

0 0 0; )

But since (
0 0 0; ) ≥ 0, we know that

{( 0 0) + [e(0) + e(0)]}+(
0 0 0; )

≤ {(b  b) + [e(b) + e(b)]}+(b  b b; )
But the right hand side of the inequality is the value of the proposer’s objective function under the

proposal (b  b b b). This therefore contradicts the assumption that ( 0 0 0 0) achieves a higher
value for the proposer’s problem. ¥

A.3 Proof of Proposition 3

By Proposition 2, we can establish the existence of an equilibrium by showing that we can find a

pair of value functions () and () and a pair of debt thresholds 
∗
 and ∗ such that (i) ()

and () solve (4.4) given ∗ and ∗ , and, (ii) 
∗
 and ∗ solve (4.3) given () and (). We

simply sketch how to do this here, the details are available on request.

Let  denote the set of all real valued functions (·) defined over the set [ ] that are continuous
and concave. For each  ∈ {} and any  ∈ [((

∗) − ∗) ], define the operator  

:
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 ×  →  as follows:

 

(  )() =

⎧⎨⎩ max() (  ) +
(;)


+  [() + ()]

 (   ; ) ≥ 0,  ≥ ∗,  ≤ ∗ &  ∈ [ ]

⎫⎬⎭ 

Let z = (  ) and let z(  )() = (

(  )() 



(  )()) be the corresponding

function from  ×  to itself. For any z ∈ [((
∗) − ∗) ]2, it can be verified that z is a

contraction and admits a unique fixed point z (where we use the subscript z to indicate that this

fixed point depends on z). Given z, let

(z) = argmax{

+  [z() + z()] :  ∈ [ ]}

and let (z) = (z) ×(z). Then, we have an equilibrium if we can find a fixed point of

this correspondence, z ∈ (z). This can be proven by showing that  satisfies the conditions of

Kakutani’s Fixed Point Theorem. ¥

A.4 Proof of Lemma 1

From Proposition 1, we know that

() = max
()

⎧⎨⎩ (  ) +
(;)


+ [() + ()]

 (   ; ) ≥ 0,  ≥ ∗,  ≤ ∗ &  ∈ [∗ ]

⎫⎬⎭ 

Moreover, from the discussion in the text, we know that if  ≤ ∗ the optimal policies are (
∗ ∗ ∗),

and, if   ∗ the constraints  ≥ ∗,  ≤ ∗ and  ≥ ∗ in the maximization problem will not be

binding, but the budget constraint will be binding.

Suppose first that   ∗. Then, we know that in a neighborhood of  it must be the case that

() = (
∗ ∗) +

(
∗ ∗ ∗; )


+ [(
∗
) + (

∗
)]

Thus, it is immediate that the value function () is differentiable at  and that

0() = −(
1 + 


)

Now suppose that   ∗. Then, we know that in a neighborhood of  it must be the case that

() = max
()

⎧⎨⎩ (  ) +
(;)


+  [() + ()]

(   ; ) ≥ 0 &  ∈ [∗ ]

⎫⎬⎭ 

Define the function

() =
( ()) + ()− (1 + )


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and let

() = ( () ()) +
( () () (); )


+  [(()) + (())] 

Notice that ( () () ()) is a feasible policy when the initial debt level is  so that in a neigh-

borhood of  we must have that () ≥ (). Moreover, () is twice continuously differentiable

with derivatives

0() = −()−(1+

)

00() = −()−(+1)(1+

)2  0

The second derivative property implies that () is strictly concave. It follows from Theorem 4.10 of

Stokey, Lucas and Prescott (1989) that () is differentiable at  with derivative 
0
(0) = 0() =

−()−(1+ ). To complete the proof note that ( () ()) must solve the problem:

max
()

⎧⎨⎩ (  ) +
(();)



(   (); ) ≥ 0

⎫⎬⎭ 

which implies that ()
− = [

1−()
1−()(1+) ]. Thus, we have that

0() = −[
1−  ()

1−  ()(1 + )
](
1 + 


)

¥

A.5 Proof of Proposition 4

We proceed in two steps. First we prove that both in a political equilibrium and in the planner’s

solution, the upperbound on debt  ≤  does not bind for any   . This establishes equation

(3.3) in Section 3.2 and equation (4.6) in Section 4.2. Then we prove the statement of Proposition

4 and equation (3.5) of Section 3.2.

Step 1. Consider a particular political equilibrium and let { () () ()} be the associated
equilibrium policies. We wish to prove that for any state ( ) there is an  ( )  0 such that

()  −  ( ). Since the planner’s solution arises as a special case of the political equilibrium

when  = , this would imply that the same property holds for the planner’s solution. Assume

that there is a state ( ) such that () is arbitrarily close to ; that is, () = − , where 

is arbitrarily small. We can write () =  ( ()) where () is a continuous function implicitly

defined by the solution of the equation − = [ 1−
1−(1+) ]. Since ()  ∗, we must have

( ()  ( ())  (); ) = 0 (A.4)

Thus, we can express all the policy choices as a function of , where () = −  = (),  () =

 () solves (A.4) and () =  ( ()) =  (). Note that as  → 0, we have  ()→ e  1(1+ ).
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For if  () → 1(1 + ), then  () → 0 and (A.4) would not be satisfied since   . Moreover,

 ()→ e implies  ()→ e  0.
From the first order condition on debt, we have that:

(
1−  ()

1−  () (1 + )
) ≥ −[0(()) + 

0
(())] (A.5)

≥ −0(()) = −
µ

1− (())

1− (())(1 + )

¶


It is easy to see that (())→ 1(1+ ) as  → 0. This implies that the right hand side of (A.5)

diverges to infinity, while the left hand side converges to a finite value: a contradiction. ¥
Step 2. We now prove that the deadweight loss of taxation is a submartingale when   , with

strict inequality for some states ( ). The argument in Section 4.2 establishes that the MCPF is a

submartingale (equation (4.8)). To complete the statement of the proposition, note that if   ,

then ∗  0, and ∗  . It is also easy to show that if   , there is a 0  ∗ such that for any  ≤
0 we have Pr

¡
0 s.t. () ≤ ∗

0 |
¢
 0 for any . For these states (4.9) holds as a strict inequality.

To prove (3.5), note that if  = , then ∗ = 0. In this case, Pr
¡
0 s.t. () ≤ ∗

0 |
¢

∗
1−∗(1+) = 0:

which implies that both in an equilibrium with unanimity and in the planner’s solution, the MCPF

is a martingale. ¥

A.6 Proof of Proposition 5

Clearly for all states ( ) such that ∗() = ∗, we have ∗   ( 0 (()) | ). We now prove
that there are states in which  ()   ( 0(()) | ). We know from Lemma 2 and 3 below that

(())   () for all states ( ) with  ∈ [ ] and that both lim→ (()) = 1(1 + )

and lim→ () = 1(1+ ). So there is a  such that (())  ()− for all  ∈ [ ], and
there is a 0 such that ((00))  (

00) + 
2
for 00  0. This implies that for   0 we have

 ( 0 (()) | = ) = (()) + (())

= () + ()− 

2
 ()

This shows that for all states (ee) such that e  0 and e = , we have 
³
 0
³
(e)´ ¯̄̄e´  (e).

While for states (ee) such that e ≤ ∗, we have 
³
 0
³
(e)´ ¯̄̄e´  (e). So   () is not a

martingale of any type. ¥

A.7 Proof of Lemma 2

We begin by showing that ∗ ≥ ∗. Suppose that, to the contrary, that 
∗
  ∗. There are two

possibilities. The first is that ∗  ∗ . Note that the first order condition for problem (4.3) is
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1


= −[0(∗) + 

0
(

∗
)] (A.6)

From this and Lemma 1, it follows that ∗  ∗  ∗ ≤ ∗ and that ∗ and ∗ satisfy the
following two first order conditions:

(
1− (

∗
)

1− (
∗
)(1 + )

) +  =





and

(
1− (

∗
)

1− (
∗
)(1 + )

) +  ≤ 


( = if ∗  ∗).

But since ∗  ∗ we know that

1− (
∗
)

1− (
∗
)(1 + )


1− (

∗
)

1− (
∗
)(1 + )



In addition,  ≤  and hence the above two first order conditions are clearly inconsistent.

The second possibility is that ∗  ∗ . In this case, it follows from (A.6) and Lemma 1 that

∗  ∗  ∗ ≤ ∗. Since 
∗
  ∗ , it must be that in a boom with debt level  = ∗ the policy

is such that (
∗
)  ∗, (∗)  ∗, and (

∗
)  ∗ . This implies that

0 = ((
∗
) (

∗
) (

∗
);

∗
)

 (
∗ ∗ ∗ ;

∗
) = (

∗)− ∗ − ∗  (
∗)− ∗ − ∗

(A.7)

Since ∗ ≤ ∗, it must be that in a recession with debt level  = ∗, the policy is such that
(

∗
) = ∗, (∗) = ∗, and (

∗
) = ∗. This implies:

0 ≤ (
∗ ∗ ∗;

∗
) = (

∗)− ∗ − ∗  (
∗)− ∗ − ∗ 

which is in contradiction with (A.7).

Given that ∗ ≥ ∗, it follows from (4.5) that ∗  ∗ . Lemma 1 and the first order condition
(A.6) imply that ∗ ≤ ∗ and that ∗  ∗. ¥

A.8 Proof of the results of Section 4.3.1

In Section 4.3.1 we make the following three claims. (i) If  ≥ ∗ then ()  (), ()  ()

and ()  (). (ii) There is a debt level b between ∗ and ∗ such that new debt will be higher

in a recession than a boom if and only if   b. (iii) Tax revenues will be higher in a boom than a

recession when  ≥ b.
We begin with claim (i). Assume for now that we know that when  ≥ ∗ , ()  ().

Then the remaining components of part (i) follow easily. The first order conditions tell us that

{ (),()} must satisfy the following equality:

− = [
1− 

1− (1 + )
]
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which implies that ()  (). In addition, since 
∗
 ≤ ∗ ≤ , by Lemma 3 below we have that

() ≤   ()

Claim (ii) follows from the facts that () is increasing in  on the interval (∗ 
∗
 ], () is

constant on the interval (∗ 
∗
 ], (

∗
)  (

∗
), and (

∗
)  (

∗
) (by claim (i)).

For claim (iii), note first that

(()) ≥ ()− () + (1 + )

and that

(()) = ()− () + (1 + )

Now note that ()  () and, for  ≥ b, () ≥ ().

It remains therefore to show that when  ≥ ∗ , it must be the case that ()  (). When

 ≥ ∗ , we know from the discussion following Proposition 1 that { (), (), ()} satisfies the
following three equations:

− = [
1− 

1− (1 + )
]

[
1− 

1− (1 + )
] = −[0() + 

0
()]

and

(   ; ) = 0

Suppose, to the contrary, that () ≤ (). Then it follows immediately that () ≥ (). In

addition, we have that

−[
0
(()) + 

0
(())] ≥ −[0(()) + 

0
(())]

Suppose that it were the case that −0(()) ≤ −0(()). Then, since    , we would

have that

−[
0
(()) + 

0
(())] ≤ −[0(()) + 

0
(())]

Combining these two inequalities we could conclude that () ≥ (). But then we would have

0 = (() () (); )  (() () (); ) = 0

a contradiction. Thus, we would have shown that ()  ().

It follows that we can prove that ()  () by showing the following result:

Lemma A.2. If  and  are differentiable at  ∈ [ ], then

−0() ≤ −0()
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Proof of Lemma A.2: As in the proof of Proposition 3, let  denote the set of all real valued

functions (·) defined over the set [ ] that are continuous and concave. For  ∈ {}, define
the operator   :  ×  →  as follows:

 (  )() =

⎧⎨⎩ max() (  ) +
(;)


+  [() + ()]

 (   ; ) ≥ 0,  ≥ ∗,  ≤ ∗ &  ∈ [∗ ]

⎫⎬⎭ 

Let  (  )() = ((  )() 
(  )()) be the corresponding function from  ×  to

itself. From Proposition 2, we know that (  ) =  (  ). Moreover,  is a contraction.

Now let e and e belong to  and assume that for any  if  and  are sub-gradients

of e and e at , then we have that: − ≥ −  Define v0 = (e  e) and consider the
sequence of functions h ()i∞=1 for  = , defined inductively as follows: 1 =  (v0), and

+1 =  ( ). Let v = ( ) and note that, since  is a contraction, hvi∞=1 must
converge to (  ).

Finally, for all   0, let



 (v) = argmax

{

+  [() + ()] :  ∈ [∗ ]}

and let 

 (v) be the largest element of the compact set 


 (v). Notice that 


 (v) is non-

increasing in . Also let

∗() =
(

∗) + − ∗

1 + 


Then we have:

Claim: For all , for any  ∈ [ ] if  and  are sub-gradients of  and  at  then we

have that: − ≥ − . In addition, if  ∈ (∗((v−1)) ], then  and  are differentiable

at  and −0()  −0().

Proof: The proof proceeds via induction. Consider the claim for  = 1. In state  if (   ) is a

solution to the problem

max(  ) +
(;)


+ [e() + e()]

(   ; ) ≥ 0,  ≤ ∗,  ≥ ∗ &  ∈ [∗ ]


then: (i) if  ≤ ∗(

 (v0)), (  ) = (∗ ∗) and  ∈ 

 (v0) ∩ { : (
∗ ∗ ; ) ≥ 0}; (ii) if

 ∈ (∗( (v0)) ∗((v0))], (  ) = (∗ ∗) and (
∗ ∗ ; ) = 0; and, (iii) if   ∗(


(v0)),

(   ) is uniquely defined and the budget constraint is binding. Moreover,   ∗ and   ∗.
Denote the solution in case (iii) as ( (;v0) (;v0) (;v0)).

It follows from this that, if  ≤ ∗(

 (v0))

 (v0)() = (
∗ ∗) +

(
∗ ∗  (v0); )


+ [e( (v0)) + e( (v0))]
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Thus,  (v0) is differentiable and its derivative is

−
(v0)()


=
1 + 




If  ∈ (∗( (v0)) ∗((v0))], then

 (v0)() = (
∗ ∗) + [e(∗ + (1 + )−(

∗)) + e(∗ + (1 + )−(
∗))]

It follows that if  is a sub-gradient of 
(v0) at  there exist sub-gradients  and  of e

and e at ∗ + (1 + ) − (
∗) such that  =  + . Notice that in this range,

 ∈ (∗( (v0)) ∗((v0))] and hence if  is a sub-gradient of  (v0) at 

−(1 + ) ∈ (1 + 



1 + 


]

If   ∗(

(v0)) then

 (v0)() = max
()

⎧⎨⎩ (  ) +
(;)


+ [e() + e()]

(   ; ) ≥ 0 &  ∈ [∗ ]

⎫⎬⎭ 

By the same argument used to prove Lemma 1,  (v0) is differentiable and its derivative is

−
(v0)()


=

1−  (;v0)

(1−  (;v0)(1 + ))
(1 + )

Since  (;v0)  ∗, in this range we have that

−
(v0)()



(1 + )




Given the expressions for the derivatives and subgradients derived above, the result would

follow for  = 1 if: (i) ∗(

(v0)) ≤ ∗(


(v0)); (ii) ∗(


(v0)) ≤ ∗(


(v0)); (iii) for all

 ∈ (∗((v0)) ∗((v0))) if  and  are subgradients of e and e at ∗+(1+)−(
∗)

and 0 and 0 are subgradients of e and e at ∗ + (1 + )−(
∗), then

−[ + ](1 + ) ≤ −[0 + 
0
](1 + );

and, (iv) for all   ∗(

(v0))

1− (;v0)

(1− (;v0)(1 + ))


1− (;v0)

(1− (;v0)(1 + ))
.

We will now establish that these four conditions are satisfied. For the first, we will show that

(v0) ≥ (v0). Recall that by definition  (v0) is the largest element in the compact set


 (v0) = argmax


{

+  [e() + e()] :  ∈ [∗ ]}
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As shown in Lemma 2, we have that ∗ ≥ ∗. We can assume wlog that 

(v0)  ∗. Thus, there

exists sub-gradients  and  of e and e at (v0) such that
1


= − [ + ] 

Suppose that  ≤ (v0). Then, if 
0
 and 

0
 of e and e at  then since− ≤ −,  ≥  ,

and −0 ≤ −, we know that:

− £
0
 + 

0


¤ ≤ − [ + ] =
1




This implies that (v0) ≥ (v0). A similar argument establishes the second condition.

For the third condition, let  ∈ (∗((v0)) ∗((v0))), let  and  be subgradients ofe and e at ∗ + (1 + ) − (
∗), and let 0 and 0 be subgradients of e and e at

∗ + (1 + )−(
∗). Then we have

−[ + ](1 + ) ≤ −[ + ](1 + )

≤ −[0 + 
0
](1 + )

where the first inequality follows from the facts that  ≥  and − ≤ −, and the second
inequality follows from the facts that e and e are concave and that (

∗)  (
∗).

For the fourth condition, note that ( (;v0) (;v0) (;v0)) is defined by the following

three conditions:

(;v0)
− = [

1−  (;v0)

1−  (;v0)(1 + )
]

there exist subgradients  and  be subgradients of e and e at (;v0) such that
[

1−  (;v0)

1−  (;v0)(1 + )
] = −[ + ]

and

( (;v0) (;v0) (;v0); ) = 0

Suppose to the contrary that (;v0) ≥ (;v0) Then, (;v0) ≤ (;v0) and (;v0) ≥
(;v0). It follows that

0 = ((;v0) (;v0) (;v0); ) ≥ ((;v0) (;v0) (;v0); )

 ((;v0) (;v0) (;v0); )

This is a contradiction.

Now assume that the claim is true for  = 1  and consider it for  + 1. By the induction

step, for any  ∈ [ ] if  is a sub-gradient of  at  and  is a sub-gradient of  at  then

we have that: − ≥ − It follows that  and  have the same properties as the functionse and e and the same argument as above applies to step  + 1. ¥
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We can now prove Lemma A.2. Given Lemma 1, all we need to do is to establish that if

 ∈ (∗  ] then
−0() ≥ −0().

Suppose, to the contrary, that there exists some  ∈ (∗  ] such that −0()  −0(). Let
  0 be such that  −   ∗ . Given that v converges to (  ), it must be the case that


(v) converges to 


 (  ) = ∗ as  →∞. Thus, for sufficiently large , ∗((v))  −.

For any  sufficiently large, therefore, the Claim implies that  and  are differentiable on

( −  ] and −0()  −0() for any  ∈ ( −  ]. Thus, by Theorem 25.7 of Rockafellar

(1970), we know that lim→∞ 0() = 0() for any  ∈ (− ], which includes : a contradiction.
¥

A.9 Proof of Lemma 3

(i) If  ≤ ∗, we have that () = ∗  ∗ ≥ . Assume then that   ∗. Suppose, contrary to
the claim, that () ≤ . By Lemma 1, we have that

−0() =
1− ()

1− ()(1 + )


Since ()   the first order conditions for (() () ()) imply that there must exist

sub-gradients  and  of  and  at () such that

1− ()

1− ()(1 + )
= − [ + ] 

Since ()  ∗, for this equation to hold we must have that ()  ∗ and hence we know by
Lemma 1 that

 = −
1− (())

1− (())(1 + )
(
1 + 


)

In addition, it must be the case that

−  −
Clearly, this is case if () ≤ ∗ . If ()  ∗ , the inequality follows from the fact that

(())  (()). Thus, we have that

1− ()

1− ()(1 + )
= − [ + ]

 −
=

1− (())

1− (())(1 + )


But this is a contradiction because the facts that (·) is increasing and that  ≥ (), imply that

() ≥ (()).
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(ii) If  ≤ ∗ , we have that () = ∗ . Thus, ()   if   ∗ and ()   if

 ∈ (∗  ∗ ]. Assume then that   ∗ . Suppose, contrary to the claim, that () ≥ . By

Lemma 1, we have that

−0() =
1− ()

1− ()(1 + )


Since () ≥   ∗  ∗, then we know from the first order condition for () and Lemma 1

that

1− ()

1− ()(1 + )
≥ (

1− (())

1− (())(1 + )
) + (

1− (())

1− (())(1 + )
) (= if ()  )

Since (())  (()), this equation implies that

1− ()

1− ()(1 + )
 (

1− (())

1− (())(1 + )
)

But this is a contradiction because the facts that (·) is increasing and  ≤ (), imply that

() ≤ (()). ¥

A.10 Proof of Proposition 6

The dynamic pattern of debt described in the proposition follows immediately from Lemma 3.

Thus, to prove the proposition we must show that the debt distribution converges strongly to a

unique invariant distribution. To this end, define the state space  = [ ]×{} with associated
-algebra F = B × H where B is the family of Borel sets that are subsets of [ ], and H is the

family of subsets of {}. For any subset  ∈ F , let () denote the probability that the state
lies in  in period . The probability measure  describes the debt distribution in period ; for

example, the probability that in period  the debt level lies between  and  in a boom is given

by (([ ]))(([ ] )). We are thus interested in the long run behavior of .

The probability distribution 1 depends on the initial level of debt 0 and the initial state of

the economy. To describe the probability distribution in periods  ≥ 2 we must first describe the
transition function implied by the equilibrium. This transition function is given by:

( |  ) =
⎧⎨⎩
P
{0: s.t.(0()0)∈} 0 if ∃ 0  ¡0() 0¢ ∈ 

0 


Intuitively, ( |  ) is the probability that a set  is reached in one step if the initial state is

( ). Using this notation, the probability distribution in period  ≥ 2 is defined inductively as:

() =
X


Z


( |  )−1( )
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The probability distribution ∗ is an invariant distribution if

∗() =
X


Z


( |  )∗( )

We now show that the sequence of distributions hi∞=1 converges strongly to a unique invariant
distribution.

By Theorem 11.12 in Stokey, Lucas and Prescott (1989), it is enough to show that the transition

function  satisfies the  condition (see the definition in Stokey, Lucas and Prescott (1989)). To

this end, let 1( |  ) = ( |  ) and define recursively:

( |  ) =
X
0

Z
0
(

¯̄
0 0 )−1(0 0 |  )

Thus, ( |  ) is the probability that a set  is reached in  steps if the initial state is ( ). To
establish that  satisfies the  condition, it is sufficient to prove that there exists a state (∗ ∗),
an integer  ≥ 1 and a number   0, such that for any initial state ( ),  ((∗ ∗) |  )  

(See Exercises 11.5 and 11.4 in Stokey, Lucas and Prescott (1989)).

Consider the state (∗ ). Define  = min∈[∗ ] [− ()]. Since, by Lemma 3, ()  

for any  ∈ [∗  ], we have that   0. Let  be the smallest integer larger than
−∗


+1. Then,

we claim that for any initial state ( ), we have that:

((∗ ) |  ) ≥  ()
−1  0

If this claim is true, then by choosing  ∈
³
0  ()

−1
´
, we have the desired condition.

To see that the claim is true, suppose first that the initial state ( ) is such that  ≤ ∗ . With
probability of at least  the state will be (

∗
  ) in the next period and it will remain there for

as long as the economy remains in a boom (which happens with probability ). Next suppose

that the initial state ( ) is such that   ∗ . With probability of at least  the economy

will be in a boom the next period and, again, it will remain in a boom thereafter with probability

 . If it does remain in a boom, then for as long as the debt level remains above 
∗
 , debt will be

reduced by at least  in each period. Thus, after  periods, the debt level must have gone below

∗ in some period and therefore will have reached ∗ . ¥

A.11 Proof of Proposition 9

The primary surplus in state  is given by:

() = (1 + )− ()

Note first that the primary surplus in state  is increasing in . This is immediate if   ∗ since in
that case () = ∗. To see the result if   ∗ note first that when the mwc is not providing pork

() = ( ())− ()
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Now recall that  () is increasing in  and () is decreasing in .

To understand the long run behavior of the primary surplus when the economy enters a boom,

let the level of debt when the economy enters a boom be . By Proposition 6, we know that this

debt level must exceed ∗ . To show that the primary surplus jumps up when the economy enters
the boom, we need to show that

(1 + )− ()  (1 + )−1 ()− 

We have that, by definition,

(1 + )−1 ()−  = (1 + )−1 ()− (
−1
 ())

Since debt levels are increasing in a recession, we have that   −1 (). Thus, using the fact that
 is increasing, we have that

(1 + )−1 ()− (
−1
 ())  (1 + )− ()

From the fact that   ∗ , we know that ()  () and hence

(1 + )− ()  (1 + )− ()

The fact that, after the initial jump, the primary surplus starts gradually declining until either

it reaches a minimal level of ∗ or the boom ends follows from Proposition 6 and the fact that

() is increasing in .

To understand the long run behavior of the primary surplus when the economy enters a recession,

let the level of debt when the economy enters a recession be . By Proposition 6, we know that

this debt level must be at least as big as ∗ . To show that the primary surplus jumps down when
the economy enters the boom, we need to show that

(1 + )− ()  (1 + )−1 ()− 

We have that, by definition,

(1 + )−1 ()−  = (1 + )−1 ()− (
−1
 ())

Since, in the long run, debt levels are decreasing or constant in a recession, we have that  ≤ −1 ().
Thus, using the fact that  is increasing, we have that

(1 + )−1 ()− (
−1
 ()) ≥ (1 + )− ()

From the fact that   ∗ , we know that ()  () and hence that

(1 + )− ()  (1 + )− ()

The fact that, after the initial jump, the primary surplus starts increasing follows from Proposition

6 and the fact that () is increasing in . ¥
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A.12 Data Sources and Definitions

1. Output: seasonally adjusted real GDP, chained, base year is 2005. Source: National Income

and Product Accounts.

Available on-line at http://www.bea.gov/national/nipaweb/SelectTable.asp

2. The public spending/GDP ratio: total federal government expenditures less “Net Interest”

as a % of GDP. Source as above.

3. The tax revenue/GDP ratio: total federal tax revenue as a % of GDP. Source as above.

4. The debt/GDP ratio: the end of the year outstanding U.S. government debt not “held by

Federal Government Accounts” as a % of GDP. Source: Historical Tables of the office of

Management and Budget, the White House.

Available on-line at http://www.whitehouse.gov/omb/budget/Historicals

5. Length and frequency of recessions are constructed from NBER data on US Business Cycle

Expansions and Contractions.

Available on-line at http://www.nber.org/cycles.html
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